Отчет о результатах единого государственного экзамена в 2020 году в ГБОУ СОШ с.Пестравка

(наименование ОО)

Методический анализ результатов ЕГЭ

ПО	физике
	(учебный предмет)

РАЗДЕЛ 1. ХАРАКТЕРИСТИКА УЧАСТНИКОВ ЕГЭ ПО УЧЕБНОМУ ПРЕДМЕТУ

1.1. Количество участников ЕГЭ по учебному предмету (за последние 3 года)

Таблица 2-1

2018		20	19	2020		
	% от общего		% от общего		% от общего	
чел.	числа	чел.	числа	чел.	числа	
	участников		участников		участников	
11	43	3	19	8	37	

1.2. Процентное соотношение юношей и девушек, участвующих в ЕГЭ

Таблица 2-2

	2018			2019	2020	
Пол	поп	% от общего	ноп	% от общего	ноп	% от общего
	чел.	числа участников	чел.	числа участников	чел.	числа участников
Женский	4	37				
Мужской	7	63	3	100	8	100

1.3. Количество участников ЕГЭ по категориям

Таблица 2-3

Всего участников ЕГЭ по предмету	8
Из них:	8
выпускников текущего года, обучающихся по программам СОО	
выпускников текущего года, обучающихся по программам СПО	0
выпускников прошлых лет	0
участников с ограниченными возможностями здоровья	0

1.4. Основные УМК по предмету, которые использовались в ОО в 2019-2020 учебном году.

Таблица 2-4

<u> п</u> /п	Название УМК
	Г.Я. Мякишев, Б.Б. Буховцев, В.М. Чаругин. Физика. 11 класс, 2010

<u> п</u> /п	Название УМК
	Мякишев Т.Я., Буховцев Б.Б., Сотский Н.Н. / Под ред. Парфентьевой Н.А., Физика,
	11 класс, М.: Просвещение, 2017г

ВЫВОДЫ о характере изменения количества участников ЕГЭ по учебному предмету (отмечается динамика количества участников ЕГЭ по предмету в целом, по отдельным категориям, видам образовательных организаций и АТЕ)

По сравнению с 2019 г. количество участников ЕГЭ по физике в ГБОУ СОШ с.Пестравка незначительно увеличилось (на 5 человек).

Традиционно участниками ЕГЭ по физике, в большей степени, являются юноши (72,5%).

РАЗДЕЛ 2. ОСНОВНЫЕ РЕЗУЛЬТАТЫ ЕГЭ ПО ПРЕДМЕТУ

21. Диаграмма распределения тестовых баллов по предмету в 2020 г. (количество участников, получивших тот и ли иной тестовый балл)

22. Динамика результатов ЕГЭ по предмету за последние 3 года

Таблица 2-1

	ГБОУ СОШ с.Пестравка		
	2018 г.	2019 г.	2020 г.
Не преодолели минимального балла	1 ч.	0 ч.	0 ч.
Средний тестовый балл	53	56,7	61
Получили от 81 до 99 баллов	1	0	1
Получили 100 баллов	0 ч.	0 ч	0 ч.

23. Результаты по группам участников экзамена с различным уровнем подготовки:

В разрезе категории участников ЕГЭ

Таблица 2-2

Выпускники текущего года, обучающиеся по	Выпускники текущего года, обучающиеся по	Участники ЕГЭ
программам СОО	программам СПО	c OB3

Доля участников, набравших балл ниже	0	-	-
минимального			
Доля участников, получивших тестовый балл от минимального	5 чел. (63%)	-	-
балла до 60 баллов			
Доля участников, получивших от 61 до 80 баллов	2 чел (25%)	-	-
Доля участников, получивших от 81 до 99 баллов	1 (12%)	-	-
Количество участников, получивших 100 баллов	0	-	-

ВЫВОДЫ о характере изменения результатов ЕГЭ по предмету (с опорой на приведенные в разделе 3 показатели)

Результаты ЕГЭ по физике в 2020 году находятся на достаточно высоком уровне, что является закономерным итогом целенаправленной и планомерной работы, которая проводится в Самарской области в отношении учебного предмета «Физика», являющегося приоритетным для региона. Так, средний балл составляет 61%, что выше данного показателя предыдущего года. В 2020 году впервые наивысший балл составил 99%

В 2020 году отсутствуют выпускники, не сумевшие набрать минимальный порогЭто говорит о стабильности подготовки выпускников к сдаче экзамена.

Раздел 3. АНАЛИЗ РЕЗУЛЬТАТОВ ВЫПОЛНЕНИЯ ОТДЕЛЬНЫХ ЗАДАНИЙ ИЛИ ГРУПП ЗАДАНИЙ

3.1. Краткая характеристика КИМ по учебному предмету

КИМ по физике 2020 г. можно охарактеризовать как в целом стандартный по подбору большинства заданий, проверяющий основные навыки и умения. В группе заданий 28-32 с развернутым ответом соблюден баланс между заданиями на базовые навыки и умения (28,32), заданием с акцентом на построение математической модели из основ теории (№30) и олимпиадными заданиями 29 и 31. Среди заданий с кратким ответом в основном даны стандартные задачи на базовые знания.

3.2. **Анализ выполнения заданий КИМ** проводится в соответствии с методическими традициями предмета и особенностями экзаменационной модели по предмету (например, по группам заданий одинаковой формы, по видам деятельности, по тематическим разделам и т.п.).

В качестве приложения используется план КИМ по предмету с указанием средних процентов выполнения по каждой линии заданий в регионе.

Таблица 3-1

	Проверяемые	Уровень	Процен	т выполнения зад	дания в субт	ьекте РФ ²
Обознач. задания в работе	элементы содержания / умения	э ровень сложности задания	средний	в группе не преодолевших минимальный балл	в группе 61-80 т.б.	в группе 81-100 т.б.

1	Равномерное прямолинейн ое движение, равноускорен ное прямолинейн ое движение, движение по окружности	Б	87, 5	-	100	100
2	Законы Ньютона, закон всемирного тяготения, закон Гука, сила трения	Б	87,5	-	100	100
3	Закон сохранения импульса, кинетическая и потенциальн ые энергии, работа и мощность силы, закон сохранения механическо й энергии	Б	75	-	100	100
4	Условие равновесия твердого тела, закон Паскаля, сила Архимеда, математическ ий и пружинный маятники, механически е волны, звук	Б	50	-	50	100
5	Механика (объяснение явлений; интерпретац ия результатов опытов, представленн ых в виде таблицы или графиков)	П	62, 5	-	100	100

6	Механика (изменение физических величин в процессах)	Б, П	75	-	100	100
7	Механика (установлени е соответствия между графиками и физическими величинами, между физическими величинами и формулами)	П, Б	87,5	-	75	100
8	Связь между давлением и средней кинетической энергией, абсолютная температура, связь температуры со средней кинетической энергией, уравнение Менделеева — Клапейрона, изопроцессы	Б	75	-	100	100
9	Работа в термодинами ке, первый закон термодинами ки, КПД тепловой машины	Б	87,5	-	100	100
10	Относительн ая влажность воздуха, количество теплоты	Б	100	-	100	100

	МКТ,					
11	термодинами ка (объяснение явлений; интерпретац ия результатов опытов, представленн ых в виде таблицы или графиков)	Б, П	87,5	-	100	100
12	МКТ, термодинами ка (изменение физических величин в процессах; установление соответствия между графиками и физическими величинами, между физическими величинами и формулами)	П, Б	100	-	100	100
13	Принцип суперпозици и электрически х полей, магнитное поле проводника с током, сила Ампера, сила Лоренца, правило Ленца (определение направления)	Б	62,5	-	0	100

	Пророддоми	Уровень	Проце	нт выполнения за	дания в суб	ъекте РФ
Обознач. задания в работе	Проверяемые элементы содержания / умения	у ровень сложности задания	средний	в группе не преодолевших минимальный балл	в группе 61-80 т.б.	в группе 81-100 т.б.
14	Закон Кулона, конденсатор, сила тока, закон Ома для участка цепи, последовател ьное и параллельное соединение проводников, работа и мощность тока, закон Джоуля — Ленца	Б	50	-	0	100
15	Поток вектора магнитной индукции, закон электромагни тной индукции Фарадея, индуктивнос ть, энергия магнитного поля катушки с током, колебательны й контур, законы отражения и преломления света, ход лучей в линзе	Б	87,5	-	100	100

	Проверяемые Уровень	Процент выполнения задания в субъекте РФ				
Обознач. задания в работе	элементы содержания / умения	э ровень сложности задания	средний	в группе не преодолевших минимальный балл	в группе 61-80 т.б.	в группе 81-100 т.б.
16	Электродина мика (объяснение явлений; интерпретац ия результатов опытов, представленных в виде таблицы или графиков	П	87,5	-	50	100
17	Электродина мика (изменение физических величин в процессах)	Б, П	100	1	100	100
18	Электродина мика (установлени е соответствия между графиками и физическими величинами, между физическими величинами и формулами)	П, Б	75	-	75	100
19	Планетарная модель атома. Нуклонная модель ядра. Ядерные реакции.	Б	62,5	-	100	100
20	Фотоны, линейчатые спектры, закон радиоактивно го распада	Б	87, 5	-	100	100

	Проверяемые	Уровень	Процент выполнения задания в субъекте РФ			
Обознач. задания в работе	элементы содержания / умения	э ровень сложности задания	средний	в группе не преодолевших минимальный балл	в группе 61-80 т.б.	в группе 81-100 т.б.
21	Квантовая физика (изменение физических величин в процессах; установление соответствия между графиками и физическими величинами, между физическими величинами и формулами)	Б	100	-	100	100
22	Механика – квантовая физика (методы научного познания)	Б	50	-	50	100
23	Механика – квантовая физика (методы научного познания)	Б	75	-	100	100
24	Элементы астрофизики: Солнечная система, звезды, галактики	П	62,5	-	50	100
25	Механика, молекулярная физика (расчетная задача)	П	37, 5	-	50	100
26	Молекулярна я физика, электродина мика (расчетная задача)	П	0	-	0	0

	Проверяемые	Уровень	Процент выполнения задания в субъекте РФ			
Обознач. задания в работе	элементы содержания / умения	э ровень сложности задания	средний	в группе не преодолевших минимальный балл	в группе 61-80 т.б.	в группе 81-100 т.б.
27	Электродина мика, квантовая физика (расчетная задача)	П	37,5	1	66	100
28	Механика – квантовая физика (качественна я задача)	П	75	-	100	100
29	Механика (расчетная задача)	В	25	-	33	100
30	Молекулярна я физика (расчетная задача)	В	37,5	-	16	100
31	Электродина мика (расчетная задача)	В	25	-	0	100
32	Электродина мика, квантовая физика (расчетная задача)	В	62,5	-	66	100

В целом особенность выполнения заданий ЕГЭ 2020 года – более равномерный процент выполнения заданий первой части.

Во второй части среди заданий 24-28 менее половины участников (37,5%) выполнили задание $\mathbb{N}25$ по механике и молекулярной физике $\mathbb{N}27$ по электродинамике и квантовой физике. Никто не решил $\mathbb{N}26$ – расчётную задачу по молекулярной физике и электродинамике.

Самые лучшие результаты выполнения заданий 1-28 получены по заданиям: №10 (100% - стандартное задание на относительную влажность и количество теплоты),

№12 (100% - задание по МКТ с очевидной идеей выполнения), №17 (100% - задание на изменение физических величин в процессах), №21- (100% - задание на установление соответствия) и № 2 (87,5% - законы Ньютона, силы), № 7- (87,5% - установление соответствия по механике), № 9 - (87,5% - первый закон термодинамики, КПД тепловой машины), № 11 - (87,5% - объяснение явлений, представленных в виде таблиц и графиков), № 15 (87,5% - магнитный поток, закон электромагнитной индукции), №16 (87,5% - анализ таблиц и графиков по электродинамике), №20 (87,5% - фотоны, спектры, закон радиоактивного распада), т.е. стандартные задания, многократно повторяющиеся во всех тренировочных тестах.

6 заданий из группы заданий 1-28 выполнены с процентом менее 60: №4 (50% - условие равновесия твёрдого тела), №14 (50% - закон Кулона, закон Ома для участка цепи),

№22 (50% - задание по механике и квантовой физике и методам научного познания) , №25-27 (37,5%% - расчётные задачи на сочетание тем). Видно, что эти задания можно сгруппировать следующим образом : 1) задания по традиционно сложным для обучающихся темам: законы сохранения, свойства водяного пара, электростатика, электромагнетизм, 2) нестандартно составленные задания, 3) задания по обычно хорошо осваиваемым темам, но находящиеся вне основной группы решаемых на уроках задач

В заданиях с развернутым ответом лучшие результаты по заданию N = 32 — стандартная задача на фотоэффект , худшие — на задания олимпиадного типа N = 29 и N = 31 и на задание N = 30, для выполнения которого необходимо последовательное построение математической модели из основных законов термодинамики.

Анализ выполнения заданий различными группами учащихся:

- 1) учащихся, не сдавших ЕГЭ на минимальные баллы нет.
- 2)в группе участников, набравших 61-80 баллов менее 80% выполнения было по заданиям №№4, 7, 13, 14, 16, 18, 22, 24-27, 29-32, более 90% выполнения достигнуто по стандартным задачам №№1-3, 5, 6, 8-12, 15, 17, 19-21, 23, 28.
- 3) в группе участников, набравших 81-100 баллов из заданий с 1 по 27 менее 90% обучающихся выполнили №26 (0% -расчётная задача по молекулярной физике и электродинамике скорее всего из-за беглого чтения условия),

3.3.4.3.

- 1) в целом школьники региона справились со всеми основными темами курса физики особенно по механике, термодинамике, атомной физике, астрофизике.
- 2) традиционно трудности вызывали разделы электростатика и электродинамика, а также темы «Водяной пар» в термодинамике и законы сохранения в механике,
 - 3)более успешно школьники справились с заданиями по статике и по термодинамике,
 - 4)менее успешно, чем в предыдущие годы, школьники выполнили задания по кинематике,

оптике, ядерной физике и задач связанных с практическими навыками проведения и обработки результатов экспериментов

- 5)возможные направления совершенствования организации и методики обучения школьников:
- а) увеличение объема часов на решение задач, б) увеличить количество лабораторных работ;
- в) обязательное решение заданий с развернутым ответом по каждой изучаемой теме, г) формирование навыков построения полных математических моделей,
- д) совершенствование математической подготовки учащихся,
- 6) по диагностике учебных достижений предлагаю сделать акцент на заданиях по проверке базовых навыков и умений, а не на заданиях по дополнительным вопросам каждой изучаемой темы.